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of the ordinary differential equation which occurs in the
boundary condition.An exact nonreflecting boundary condition was derived pre-

viously for use with the time dependent wave equation in three Finally, we shall solve a sequence of scattering problems
space dimensions. Here it is shown how to combine that boundary by using an explicit finite difference method and our
condition with finite difference methods and finite element meth- boundary condition. We shall also solve the same problems
ods. Uniqueness of the solution is proved, stability issues are dis-

by using two of the standard artificial boundary conditions.cussed, and improvements are proposed for numerical computa-
Comparison of these solutions with the ‘‘exact’’ solution,tion. Numerical examples are presented which demonstrate the

improvement in accuracy over standard methods. Q 1996 Academic obtained by computing in a very large domain so that
Press, Inc. spurious reflections are postponed, shows that our bound-

ary condition is much more accurate than the standard
ones. Our boundary condition also has the advantage that

1. INTRODUCTION it remains accurate when the radius of the artificial bound-
ary is made smaller, so that the computational domainWe wish to calculate numerically the time dependent
is reduced.field u(x, t) scattered from a bounded scattering region in

Previously, we proved that the problem in V with ourthree-dimensional space. In this region, there may be one
exact boundary condition is satisfied by the restriction toor more scatterers, and the equation for u may have vari-
V of the solution of the initial-boundary value problem in

able coefficients and nonlinear terms. As usual, we sur-
the infinite region [1]. Now we shall prove that the problem

round the scattering region by an artificial boundary B in V has a unique solution.
and confine the computation to the region V bounded by
B. Then, to formulate a problem for u in V, we make u 2. FORMULATION
satisfy a boundary condition on B. The boundary condi-
tions commonly imposed produce spurious reflections from We consider time-dependent scattering from a bounded
B. To avoid this spurious reflection, we have devised an scattering region in three-dimensional space. We surround
exact nonreflecting boundary condition [1]. In doing so, this region by a sphere B of radius a. Outside B, we assume
we chose B to be a sphere of radius a, and we assumed that the scattered field u(x, t) satisfies
that u satisfied the wave equation outside B. The boundary
condition is local in time and nonlocal on B, and it does ­2u

­t2 2 Du 5 0, u(x, 0) 5 0, ­t u(x, 0) 5 0. (2.1)
not involve high-order derivatives on B.

Now we shall show how to combine this boundary condi-
We suppose that the domain V within B is boundedtion with the finite difference method, or with the finite

internally by the smooth surface G. In V, we consider theelement method, to obtain a computational problem in V.
following simple model problem:In formulating the computational problem, it is necessary

to truncate the exact boundary condition and to retain ­2u
­t2 2 = ? (c=u) 5 f, in V 3 (0, T) (2.2)only a finite number of spherical harmonics. We shall show

how to modify this truncated boundary condition to im-
u(x, 0) 5 u0(x), x [ V (2.3)prove its accuracy. We shall also examine the stability

­

­t
u(x, 0) 5 u̇0(x), x [ V (2.4)
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5 h on G 3 (0, T) (2.5)
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THEOREM 2.1. Suppose that the initial-boundary value
problem (2.2)–(2.5) in the infinite region outside G has aS ­

­r
1

­

­tD [ru] 5 2Oy
n51

On
m52n

cn ? znmYnm on B 3 (0, T)
unique smooth solution. Then so does (2.2)–(2.7). The two
solutions coincide in V.(2.6)

The proof of Theorem 2.1 is given in Appendix A.d
dt

znm(t) 5 Anznm(t) 1 unm(t), znm(0) 5 0. (2.7) The Cauchy problem (2.2)–(2.5) with f ; 0 and c ; 1
in the infinite region outside G is well-posed with respect
to the initial data u0(x) and u̇0(x). Since its solution coin-Here n is the outward normal on G, and Ynm(u, w) is the
cides with that of the initial-boundary value problem (2.2)–nmth spherical harmonic normalized over the unit sphere,
(2.7), we immediately obtain the following result:

Ynm(u, w) 5 [(2n 1 1)(n 2 umu)!/4f(n 1 umu)!]1/2

(2.8) COROLLARY 2.1. The initial-boundary value problem
3 eimw P umu

n (cos u). (2.2)–(2.7) with f ; 0 and c ; 1 is well-posed with respect
to the initial data u0(x) and u̇0(x).

If the problem considered is real, one can use real instead
We remark that Corollary 2.1 does not imply that (2.2)–of complex spherical harmonics. In that case everything

(2.7) is well-posed with respect to arbitrary perturbationsremains the same, but the normalization constant in (2.8)
in the boundary condition (2.6).will change. In (2.2) we require that c 5 c(x) . 0. The

source term f(x, t, u, =u) may be nonlinear.
3. FINITE ELEMENT FORMULATIONEquation (2.6) is the exact nonreflecting boundary con-

dition which was derived in [1]. It involves the vector func-
We shall now derive the finite element formulation fortions znm(t), which are the solutions of the linear first-order

the problem (2.2)–(2.7) in the computational domain V.ordinary differential equations (2.7). In (2.6) the vectors
To derive the weak form of the problem, we denote by Vcn 5 hc j

nj are defined by
the Sobolev space H 1(V), which contains square-integrable
functions with square-integrable first derivatives. Next we

c j
n 5

n(n 1 1)j
2a j , (2.9) define the sesquilinear forms

A [w, u] 5 E
V

=w ? (c=u) dV, (3.1)and in (2.7) the n 3 m matrices An 5 [Aij
n ] are defined by

(w, u) 5 E
V

wu dV, (3.2)

Aij
n 5 5

2n(n 1 1)/(2a j ) if i 5 1,

(n 1 i)(n 1 1 2 i)/(2i), if i 5 j 1 1,

0, otherwise.

(2.10)
(w, u)B 5 E

B
wu dB, (3.3)

(w, u)G 5 E
G

wu dG. (3.4)
The vector function unm(t) in (2.7) has the nmth Fourier
coefficient of u on B as its only nonzero component:

We multiply (2.2)–(2.4) by a weighting function w [ V

and integrate over V. Then we use integration by parts inunm 5 [(Ynm, uur5a), 0, ..., 0]T. (2.11)
the integrated (2.2) to get

Here
(w, ü) 1 A [w, u] 2 (w, ­r u)B 5 (w, f ) 1 (w, h)G. (3.5)

(Ynm, uur5a) 5 E2f

0
Ef

0
Ynm(u, w)u(a, u, w, t) sin u du dw

Next, we use (2.6) to eliminate ­r u on B from (3.5).
These calculations lead to the weak form of the problem,(2.12)

which can be stated as follows:
Find u(t) [ V such that for all w [ V,Both unm and znm vary in time, whereas cn and An are con-

stants.
It was shown in [1] that the restriction to V of the solution

(w, ü) 1 A [w, u] 1 Sw, u̇ 1
u
aDB

5 (w, f )to the initial-boundary value problem (2.2)–(2.5), with V
replaced by the infinite region outside G, solves the initial-
boundary value problem (2.2)–(2.7). Now we shall show 1 (w, h)G 2

1
a O

y

n51
On

m52n
cn ? znm(w, Ynm)B

(3.6)

that the solution of this problem is unique.
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(w, u(0, ?)) 5 (w, u0) (3.7) we can use a standard time-marching scheme from the
Newmark family [3], such as the central difference method,

(w, u̇(0, ?)) 5 (w, u̇0) (3.8) to integrate (3.12). The solution of (3.13) is computed
concurrently, for instance, using the explicit second-orderżnm(t) 5 Anznm(t) 1 unm(t), znm(0) 5 0. (3.9)
Adams method, or the implicit trapezoidal rule [4]. The
matrix C is almost empty, since only terms along the bound-The finite element method [2] is obtained by approxi-
ary contribute to its nonzero entries.mating the weak form (3.6)–(3.9). The domain V is discret-

ized into a finite number of elements, and each element
is associated with a finite number of nodes. Then u and w 4. FINITE DIFFERENCE FORMULATIONS
are approximated by

Instead of using the finite element method, we can use
a finite difference method to solve (2.2)–(2.7). We shalluh(x, t) 5 O

I[h

dI(t)NI(x), (3.10)
now describe how to do this, choosing c(x) 5 1 in V for sim-
plicity.wh(x) 5 O

I[h

wINI(x). (3.11)
We opt for the leap-frog method, which is a standard

explicit time-marching method for the wave equation. The
wave equation (2.2) is discretized both in time and in spaceHere h is the set of nodes, NI is the shape function associ-
at (x, t) using second-order centered finite differences. Weated with node I, and dI(t) and wI are coefficients. We now
denote by Uh the numerical grid function. Let Uk be thesubstitute (3.10) and (3.11) into (3.6)–(3.9) with the sum
numerical solution and f k the source f at some grid pointover n truncated at some finite value N and require the
x at time tk 5 kDt. Then the basic step to advance theresulting equation to hold for all values of wI . This yields
numerical solution in time isthe finite element matrix form of the problem for the vector

of unknowns d 5 d(t):
Uk11 5 2Uk 2 Uk21 1 (Dt)2(DhUk 1 f k),

(4.1)Md̈ 1 Cḋ 1 Kd 5 f, t . 0 (3.12)
k 5 1, 2, ....

żnm(t) 5 Anznm(t) 1 unm(t), znm(0) 5 0 (3.13)

Here Dh denotes a finite difference approximation to thed(0) 5 d0 (3.14)
Laplacian.

ḋ(0) 5 v0 . (3.15) The boundary condition (2.6) is necessary when we wish
to advance the numerical solution on B using (4.1). Indeed,

The matrices M, K, and C, are defined by the radial part of Dh requires values of Uh outside V. Let
Dru 5 r22­r(r2dru) denote the radial part of the Laplacian.

M 5 [MIJ ], K 5 [KIJ], C 5 [CIJ], (3.16) Next, let rl denote the lth grid point in the radial direction.
Hence, rl11 5 rl 1 Dr and rl11/2 5 rl 1 Dr/2. Then a second-

MIJ 5 (NI , NJ), KIJ 5 A [NI , NJ], CIJ 5
1
a

(NI , NJ)B . order finite difference approximation to Dr is

(3.17)

Dh
r Ul 5

r 2
l11/2Ul11 2 (r 2

l11/2 1 r 2
l21/2)Ul 1 r 2

l21/2Ul21

(rlDr)2 . (4.2)
The vectors f, d, d0 , and v0 are defined by

f 5 h fIj, d0 5 hdJ0j, v0 5 hvJ0j, (3.18) To calculate Dh
r Uh at rl 5 a, we need Ul11 which lies outside

V. We eliminate it by using the finite difference approxima-
tion to (2.6) at rl 5 a, ui , wj , with the sum over n truncatedfI 5 (NI , f ) 1 (NI , h)G 2

1
a O

y

n51
On

m52n
cn ? znm(NI , Ynm)B ,

at some finite value N. This yields
(3.19)

dJ0 5 (u0 , NJ), vJ0 5 (u
.

0 , NJ). (3.20) rl11Uk
l11 2 rl21Uk

l21

2Dr
1

rl(Uk11
l 2 Uk21

l )
2Dt

(4.3)The quantities d, ḋ, and d̈ are the displacement, the veloc-
ity, and the acceleration vectors, respectively. M is the 5 2ON

n51
On

m52n
cn ? zk

nm Ynm(ui , wj).
mass matrix, K is the stiffness matrix, and C is a damping
term due to the absorbing boundary condition. We note
that M is symmetric and positive definite, and that both Thus we have the two equations (4.1) and (4.3) for the

two unknowns Uk11
l and Uk

l11 , which enables us to solveK and C are symmetric and positive semi-definite. Thus,
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for Uk11
l on B. We underline that to compute Uk11 on B, DEFINITION 5.1.

we only need the values of znm(t) at t 5 tk , because both
the differential equation and the boundary condition are Gn[u](r, t)
discretized in time about t 5 tk .

The numerical solution zh
nm to the ordinary differential

equation (2.7) is computed concurrently with Uh. Because ;5
ru(r, t), if n 5 0

2r Ey

r

(r2 2 s2)n21u(s, t)
(2s)n21(n 2 1)!

ds, if n $ 1.the eigenvalues of An lie in the left half of the complex

(5.1)

plane (see Section 6), we opt for the implicit second-order
trapezoidal rule [4, Section II.7]:

We apply Gn to unm(r, t) 5 (U, Ynm) and find (Lemma 3.2
in [1]) that Gn[unm] satisfies the one-dimensional wave
equation outside B:SI 2

Dt
2

AnD zk11
nm 5 SI 1

Dt
2

AnD zk
nm 1

Dt
2

(uk11
nm 1 uk

nm).

­2

­t2 Gn[u](r, t) 2
­2

­r2 Gn[u](r, t) 5 0, r $ a. (5.2)
(4.4)

We note that Gn[unm] is finite for any t, because u(x, t)
The inner products (Ynm , Uhur5a), needed for uk

nm and vanishes for ixi $ a 1 t. Since the solution u is purely
uk11

nm , are computed using Simpson’s fourth-order quadra- outgoing, Gn[unm](r, t) is outgoing too. Then from (5.2) it
ture rule. Since the trapezoidal rule is unconditionally sta- has the form g(t 2 r), and thus
ble, there is no restriction on Dt in the integration of (2.7).
The work required in solving the linear systems (4.4) is
negligible, because the matrices An are very small and S­

­t
1

­

­rDGn[unm](r, t) 5 0, r $ a. (5.3)
remain constant in time. We have also implemented the
explicit second-order Adams method [4, Section III.1] to
integrate (2.7), which lead to similar results. The additional An exact boundary condition is (5.3) applied to unm(r, t)

at r 5 a.stability constraint on Dt, imposed by the explicit Adams
method, is usually less restrictive than that due to the leap-

To use this boundary condition in computation, we mustfrog method. Of course, this depends on N and on the
reformulate (5.3) and derive an equivalent but more tracta-mesh size used in the computation.
ble form, which does not involve integrals or high-orderThe complete algorithm proceeds as follows:
derivatives. In (Lemma 7.1 in [1]) it was shown that

0. Initialize Uh at t0 and t1 , and set z0
nm and z1

nm to zero.

1. Compute Uk11 at all inner points in V using (4.1). runm(r, t) 5 (21)n On
j50

cnj

r j S2
­

­rDn2j

Gn[unm](r, t), (5.4)

2. Compute Uk11 at B using (4.1) and (4.3).

3. Compute zk11
nm using (4.4), and go to 1. where the constants cnj are defined by

5. MODIFIED BOUNDARY CONDITIONS cnj 5
(n 1 j)!

(n 2 j)!j!2 j . (5.5)

In computation, the sum over n in (2.6) must be trun-
cated at a finite value N. Then the boundary condition We now apply ­r 1 ­t to (5.4), and use (5.3) to obtain
becomes inexact for the modes beyond the point of trunca-
tion. It reduces to (­r 1 ­t)[runm] 5 0 at r 5 a for the
modes unm 5 (U, Ynm), n . N. This raises the question S ­

­r
1

­

­tD[runm(r, t)]

(5.6)whether we can replace this inexact condition by a more
accurate one, as we did in [5] for the reduced wave equa-

5 (21)n On
j51

2jcnj

r j11

­n2j

­t n2j Gn[unm](r, t), r $ a.tion. We shall show how to modify the truncated boundary
condition so that it remains exact for the low modes n # N,
but becomes more accurate for the high modes n . N.

To simplify the notation, we defineWe now briefly recall the derivation of (2.6)–(2.7). First,
we introduce the polar coordinates r, u, w. Next, we define
Gn , the integral operator: wnm(t) 5 (21)nGn[(u, Ynm)](a, t)/a. (5.7)
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Next, we set r 5 a in (5.6), multiply by Ynm , and sum over We use (5.12) and (5.13) with m 5 2 to obtain
n and m. This yields

B2[ru] 5 S ­

­r
1

­

­t
1

2
rDS ­

­r
1

­

­tD[ru]

(5.14)S ­

­r
1

­

­tD[r u] 5 2Oy
n51

On
m52n

Ynm On
j51

jcnj

a j

dn2j

dt n2j wnm , r 5 a.

5 Oy
j52

j( j 2 1)gj

r j12 .(5.8)

Next we use (5.12) and (5.13) with m 5 3 to getBy using (5.3) in (5.4) and definition (5.7) for wnm(t),
we find that wnm is the solution of the ordinary differen-
tial equation,

B3[ru] 5 S ­

­r
1

­

­t
1

4
rDS ­

­r
1

­

­t
1

2
rDS ­

­r
1

­

­tD[ru]

(5.15)
dn

dtn wnm(t) 5 (u, Ynm)(a, t) 2 On
j51

cnj

a j

dn2j

dtn2j wnm(t), (5.9) 5 Oy
j53

2j( j 2 1)( j 2 2)gj

r j13 .

For l $ 1, we define the operator Blwith initial conditions

Bl 5 p
l21

j50
S ­

­r
1

­

­t
1

2j
r D, (5.16)wnm(0) 5

d
dt

wnm(0) 5 ??? 5
dn21

dtn21 wnm(0) 5 0. (5.10)

where the rightmost term is j 5 0. Upon applying Bl to
We note that (5.8) and (5.9) appear in a simpler form than (5.12), we find that
in (Theorem 7.1 of [1]), because we have multiplied the
original wnm(t) by (21)n/a. To obtain the final formulation Bl[ru] 5 O(r22l), r $ a. (5.17)
(2.6), we rescale (5.9) to eliminate the large cnj that appear
in (5.8) and (5.9) by setting znm(t) 5 [z1

nm(t), ..., zn
nm(t)]T, Instead of applying B1 5 ­r 1 ­t to (5.4), we can apply

with a higher order differential operator Bl with l . 1. Thus,
when the sum over n is truncated at a finite value N, the
boundary condition on the modes n . N becomes

z j
nm(t) 5

cnj

cn1

dn2j

dt n2j wnm(t), j 5 1, ..., n. (5.11)

Bl[ru] 5 0, r 5 a. (5.18)

In deriving (5.6), we applied B1 5 ­r 1 ­t to (5.4). This In view of (5.17), we expect that using (5.18) with l . 1
operator annihilates any spherically symmetric outgoing instead of with l 5 1 will yield a smaller error.
wave, such as the leading term of the large r expansion of When we apply B2 to (5.4) and use (5.3), we get
ru(x, t), where u is any solution of (2.1):

B2[runm(r, t)] 5

(5.19)
ru(r, u, f, t) 5 Oy

j50

gj(t 2 r, u, f)
r j , r $ a. (5.12) (21)n On

j52

j( j 2 1)cnj

r j12

­n2j

­tn2j Gn[unm](r, t), r $ a.

Similarly, when we apply B3 to (5.4) we getBayliss and Turkel [6] derived a sequence of local opera-
tors, which annihilate increasingly many leading terms in
(5.12). We shall now derive an equivalent sequence of

B3[runm(r, t)] 5 (21)n On
j53

2j( j 2 1)( j 2 2)cnj

r j13

(5.20)
operators Bl , which look slightly different because we work
with ru instead of u. Then we shall show how to use them
to modify the boundary condition (5.6). 3

­n2j

­tn2j Gn[unm](r, t), r $ a.
To derive these operators, we note that for any m $ 0

We note that the term j 5 1 in (5.6) vanishes in (5.19) and
that the terms j 5 1 and j 5 2 vanish in (5.20). As aS ­

­r
1

­

­t
1

m
r D g(t 2 r)

r m 5 0. (5.13)
consequence, B2[ru] 5 0 is an exact boundary condition
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for the harmonic modes n 5 0, 1, and B3[ru] 5 0 is an Next, we multiply (2.2) across by ut and integrate over
V. Using integration by parts and the boundary conditionexact boundary condition for the modes n 5 0, 1, 2. Hence,

annihilating the leading l terms of the large distance expan- (­r 1 ­t)[ru] 5 0 at r 5 a, we get
sion (5.12) naturally imposes the exact boundary condition
on the harmonic modes 0 # n # l 2 1. d

dt
EV[u.N](t) 5 2E

B
u­tu.Nu2 dB

(6.3)
This suggests that the local boundary conditions, derived

in (Theorem 5.1 of [1]) and also derived by Thompson
and Pinsky [7], coincide with those derived in [6]. Both 2

d
dt

1
a
E

B
uu.Nu2 dB.

sequences of local operators require increasingly high-or-
der derivatives to reduce the amount of spurious reflection
at B. In contrast, the formulation (2.6) corresponding to Then we integrate (6.3) from 0 to T and use that u vanishes
B1 does not involve any derivatives beyond first-order and on B at t 5 0 to obtain the inequality
can be made arbitrarily accurate by increasing the value
of N. EV[u.N](T) # EV[u.N](0). (6.4)

For later reference, we derive the full boundary condi-
tion with l 5 2. We multiply (5.19) by Ynm and sum over

The boundary condition imposed at r 5 a on u#N isn and m. Next, we set r 5 a and use (5.11) and (5.7)
exact. Therefore, as a consequence of Theorem 2.1, u#Nto obtain
coincides with the lower modes of the restriction to V of
the solution to the initial-boundary problem (2.2)–(2.5) in

B2[ru] 5 Oy
n52

On
m52n

c̃n ? znm(t)Ynm , r 5 a. (5.21) the infinite region outside G. The energy of a solution to the
homogeneous initial-boundary value problem is conserved
[8], Section 6.8). Since the initial data is confined to V,

Here znm is the solution of (2.7), and c̃n replaces cn in (2.9): we have

EV[u#N](t) # Ey[u#N](t) 5 Ey[u#N](0)
(6.5)

c̃n( j) 5
j( j 2 1)cn1

a j11 , j 5 1, ..., n. (5.22)

5 EV[u#N](0).

6. STABILITY
By adding (6.4) to (6.5), we conclude that the total energy

When used in computation, the exact boundary condi- EV[u](t) remains bounded by the initial energy EV[u](0)
tion (2.6) is truncated at some finite value N. We now show for all time.
that the energy of the solution of the initial-boundary value When used in computation, the truncated boundary con-
problem in V remains bounded, despite the incorrect dition is approximated numerically. This introduces both
boundary condition imposed upon the higher modes n . discretization and rounding errors, which could lead to
N. Because the higher and lower modes are treated differ- numerical instability. We shall now discuss the stability of
ently in the boundary condition, we shall assume that they the first-order system of ordinary differential equations
remain independent of one another for all time. We assume (2.7), which is used to update the quantities znm(t).
that G is either a sphere or absent and that c 5 1 in V. The stability of the ordinary differential equation (2.7)
For simplicity, we let h and f equal zero. Then the energy is determined by the eigenvalues of An . Let Dn 5 [Dij

n] be
of the system in the absence of external forces is the n 3 n diagonal matrix with D jj

n 5 cnj . Then D21
n AnDn

is the companion (or Frobenius) matrix associated with
the polynomialEV[u](t) 5 E

V

1
2

(uut(x, t)u2 1 i=u(x, t)i2) dx. (6.1)

Similarly, we denote by Ey[u](t) the energy (6.1), with V Pn(x) 5 xn 1
cn1

a
xn21 1 ??? 1

cnn

an . (6.6)
replaced by the infinite region outside G.

By assumption, the lower and the higher modes fully
Hence, the eigenvalues of An coincide with the zeroes ofdecouple throughout V. We denote by u#N the first N 1
Pn . We multiply (6.6) by 2nan, set z 5 2ax, and denote the1 modes and by u.N the remaining higher modes:
resulting polynomial by Qn(z). It is

u 5 ON
n50

O
um u#n

unmYnm 1 Oy
n5N11

O
um u#n

unmYnm . (6.2)

Qn(z) 5 On
j50

(n 1 j)!
(n 2 j)!j!

zn2j. (6.7)     

u#N u.N
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7.1. Model Problem

7.1.1. Description

We consider the problem (2.2)–(2.7) with c(x) 5 1, h 5
0, and both u0 and u

.
0 equal zero. The obstacle G is the

sphere of radius 0.5, and the artificial boundary B is located
at r 5 1. Hence the computational domain V is the region
0.5 # r # 1. Initially, the medium is at rest; it is then
excited locally by a time-harmonic source distributed
within a sphere of radius rf 5 0.15 centered at xf (r 5 0.75

FIG. 1. The roots of Q10 (left) and Q20 (right).
and u 5 0). The source strength is

f (x, t)

The roots of Pn are simply the roots of Qn multiplied by 5 5a sin(gt)sin2((1 2 ix 2 xf i/rf)f/2), if ix 2 xf i , rf ,

0, otherwise.1/(2a). For n 5 1, Q1(z) 5 z 1 2, and the root is 22. For
n 5 2, Q2(z) 5 z2 1 6z 1 12, and the roots are 23 6 (7.1)
iÏ3. In Fig. 1 we see that for small values of n, the roots
of Qn lie on a curve of parabolic shape in the left-half We choose the scaling constant a 5 5 3 104 to make the
plane. Therefore for small values of n, the real parts of solution O(1). The source f has its maximal value at xf and
the eigenvalues of An are strictly negative, and the ordinary decays with distance from xf .differential equation (2.7) is asymptotically stable. As we We shall compare the numerical solution Uh of (2.2)–
increase n from 10 to 20, we observe that the roots tend (2.7) with the numerical solution Uh

y of (2.2)–(2.5) in the
to move farther away from the imaginary axis. This results infinite domain. To compute Uh

y we consider the larger
in a stronger obliteration of the past for the higher Fourier domain ixi # R, with R 5 5. Since the propagation speed
modes of the solution on B. c is one and since the support of f lies inside V, the influ-

For larger values of n, the problem of computing the ence of the boundary at r 5 R will not be sensed inside
eigenvalues is extremely ill-conditioned, so that meaning-

V until t 5 8. Therefore inside V, Uh
y coincides with the

ful results cannot be obtained even in double precision. numerical solution of the initial-boundary value problem
To show that the roots lie strictly in the left half of the (2.2)–(2.5) in the infinite region outside G for 0 # t # 8.
complex plane without calculating them, we shall use the The setup for this model problem is drawn to scale in Fig. 2.
Routh–Hurwitz criterion [4, Section I.13]. This criterion The instantaneous error Eh(t) is defined as
provides a finite algorithm based solely on the coefficients
of Qn , which are integers, to decide whether the roots lie
strictly in the left half of the complex plane. We have
implemented this algorithm in Mathematica using exact
arithmetic, and we have verified that the roots of Qn lie
strictly in the left half of the complex plane for all n up to
n 5 150. Therefore the ordinary differential equation (2.7)
is asymptotically stable for n # 150, and probably for all n.

7. NUMERICAL EXAMPLES

We shall now compare the accuracy of the various
boundary conditions via numerical experiments. First, we
shall present a detailed study of the accuracy and the con-
vergence properties of the different boundary conditions.
To do so, we shall consider a model problem, where a
locally supported time-harmonic source excites the me-
dium inside V. Second, we shall present computations for
two standard test problems: scattering of an incident plane FIG. 2. The computational domains V for Uh, and 0.5 # r # 5 for
wave from a sphere, and radiation from a piston on a Uh

y , are shown drawn to scale. The support of f lies in the small sphere
inside V.sphere.
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Eh(t) 5 iUh
y(?, t) 2 Uh(?, t)iL2(V) . (7.2) acknowledge [6]. We denote (2.6) by NR1(N) and (5.21)

by NR2(N). We recall that NR1(0) coincides with BT1,
and that NR2(0) and NR2(1) coincide with BT2.We denote by Eh

T the maximal error over the time interval
To implement (5.21), we first expand B2 as[0, 8],

Eh
T 5 max

t[[0,8]
Eh(t). (7.3)

B2 5
­2

­r2 1
­2

­t2 1 2
­2

­r­t
1

2
r S ­

­r
1

­

­tD. (7.4)

Since the solution can be scaled by any constant, the
All the terms but the cross derivatives can be approximatedmagnitude of the absolute error Eh(t) is irrelevant. We
with a second-order finite difference formula centered atshall only use it as a means to compare the performance
r 5 a and t 5 tk . The radial derivative in the term ­r­t isof the various boundary conditions in relationship to
approximated by second-order extrapolation into V, byone another.
passing a parabola through rUh at the grid locations rl22 ,
rl21 , and rl 5 a.7.1.2. Implementation Details

The test problem described above is axisymmetric and 7.1.3. Numerical Results
independent of w. Therefore, it suffices to compute the

We begin with a calculation at the low frequency g 5solution in the r, u plane for 0 # u # f, with the symmetry
f/4 on the 20 3 120 grid. In Fig. 4 we compare the solutionscondition ­u u 5 0 at u 5 0 and u 5 f. The grid in V is
obtained using BT1, BT2, and NR1(20), with the ‘‘exact’’evenly spaced with 10, 20, or 40 intervals in 0.5 # r # 1,
solution Uh

y . The solution is shown at the north pole of B,and 60, 120, or 240 intervals in 0 # u # f, respectively.
r 5 1 and u 5 0, as a function of time. Both BT1 and BT2For the computation of Uh

y , we simply extend the mesh
yield rather large errors. The solution obtained usinginto the larger domain with the same grid spacing up to
NR1(20) cannot be distinguished from Uh

y on the left graph.r 5 R. Both Uh and Uh
y are computed using the explicit

The error Eh(t) is shown on the right. By using NR1(20),second-order leap-frog method described in Section 4.
instead of BT1 or BT2, the error is reduced by almostThe stability condition for the leap-frog method on an
three orders of magnitude in accuracy. The error in usingequispaced grid with spacing h, in three space dimensions,
NR1(20) is mainly due to the discretization error and notand with c 5 1, is Dt # h/Ï3. Since we shall use a polar
to the boundary condition.grid, we simply set Dt equal to the shortest edge in the

In Fig. 5, we perform the same comparison with a highermesh divided by Ï3. We keep Dt fixed throughout the com-
frequency g 5 f. Here the solution is shown at the southputation.
pole, r 5 1 and u 5 f. We see that imposing BT1 introducesIn Fig. 3, the solution Uh

y is shown at t 5 3.5 for a
a large error both in the amplitude and in the phase. Thefrequency g 5 2f, just before the wave front reaches the
error due to the second-order condition BT2 is pointwiseexternal boundary r 5 R.
about 10% at the south pole and is smaller than in theWe shall compute Uh by using various boundary condi-
previous case g 5 f/4. This is to be expected, since localtions at B. The boundary condition Bl[ru] 5 0 with l 5 1
boundary conditions tend to be more accurate for higherand l 5 2 is denoted by BT1 and BT2, respectively, to
wave numbers. Again, the solution Uh obtained with
NR1(20) coincides with Uh

y on the graph. The error Eh(t)
for NR1(20) is slightly larger than in the previous case g 5
f/4, because we have used the same grid in both calcula-
tions.

We shall now verify that the numerical solution Uh com-
puted using NR1(N) indeed converges to Uh

y inside V if
N is large enough. We set N 5 25, and progressively refine
the initial grid 10 3 60 by a factor 2 in r and in u. At each
refinement, the error drops by a factor 4, as is shown in
Fig. 6. This shows the second-order convergence to the
exact solution Uh

y as Dr, Dt R 0. In that sense the boundary
condition is exact, even if truncated and used in a numerical
scheme: the error introduced at the boundary is negligible
in comparison to the discretization error of the numerical
method used in the interior of V. In contrast, the solutions

FIG. 3. The solution Uh
y at t 5 3.5 is shown for g 5 2f. obtained using BT1 and BT2 do not improve as we refine
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FIG. 4. Results for g 5 f/4. Left: The solutions Uh, computed using the boundary conditions BT1, BT2, and NR1(20), are compared with the
exact solution Uh

y on B at u 5 0. Right: The L2 error Eh(t) is shown for the same three boundary conditions.

FIG. 5. Results for g 5 f. Left: The solutions Uh, computed using the boundary conditions BT1, BT2, and NR1(20), are compared with the
exact solution Uh

y on B at u 5 f. Right: The L2 error Eh(t) is shown for the same three boundary conditions.

FIG. 6. The maximal errors Eh
T in the numerical solutions Uh, computed with the boundary condition NR1(25) on the three grids 10 3 60,

20 3 120, and 40 3 240, are shown versus h 5 Dr. Left: for g 5 f/4. Right: for g 5 f.
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FIG. 7. The maximal errors Eh
T in the numerical solutions, computed on the grid 20 3 120 using the boundary conditions NR1(N) and NR2(N),

are shown versus N. Left: for g 5 f/4. Right: for g 5 f.

the mesh. This clearly indicates that the error introduced hibited a long time instability. They were able to eliminate
this instability by using the dissipative Lax–Wendroffby imposing them at B dominates in the computation. If

one refines the mesh further, it may be necessary to in- scheme in the interior domain. In contrast, the boundary
conditions, which were derived in this paper and combinedcrease the value of N to ensure that the error due to the

boundary condition remains negligible. with a nondissipative second-order centered finite differ-
ence stencil inside V, never exhibited any unstable behav-Next, we compare the solutions Uh computed using the

boundary conditions NR1(N) and NR2(N). The grid 20 3 ior. Whether the explicit Adams method or the trapezoidal
rule was used to integrate the system of ordinary differen-120 is kept fixed while we increase the value of N. We

recall that NR1(0) is identical to BT1 and that NR2(0) and tial equations on the artificial boundary, the overall numer-
ical scheme was stable in all our test runs.NR2(1) are identical to BT2. Figure 7 shows that we obtain

an improvement of two or three orders in magnitude over To demonstrate the long time stability of our numerical
method, we proceed as in [10]. We consider the modelBT1 and BT2 if we use the exact boundary condition. We

attribute the small discrepancy between NR1 and NR2 problem in 7.1.1 with the source f a short-time pulse, that
is, with the temporal part sin(gt) of f (x, t) set to zero forfor large values of N to the less accurate finite difference

approximation used in (7.4). t $ f/g. In Fig. 8, the solutions Uh for g 5 f/4, using the
boundary conditions BT1, BT2, NR1(20), and NR2(20),Figure 7 also displays the subtle interplay between the

error due to discretization and the error due to truncating are shown on B at u 5 0 for a long time interval. The
results indicate that the numerical method using any onethe boundary condition. For a fixed grid there is a maximal

value for N, below which the error does not decrease any- of these boundary conditions is stable.
more. From that point on, the boundary condition becomes
more accurate than the numerical method, and it is point-

7.1.5. Computational Effort and Storage Requirementless to increase N without further refining the underly-
ing mesh. To improve the accuracy of local boundary conditions,

one can either use increasingly higher order differential
7.1.4. Long Time Stability

operators Bl , or simply move the artificial boundary farther
away from the region of interest. Typically the latter isThe issue of long time stability has arisen in the numeri-

cal implementation of an exact nonreflecting boundary done, because it does not require any major modifications
of the computer program. The price, of course, is the in-condition due to Ting and Miksis [9]. By using Kirchhoff’s

formula for the time-dependent wave equation in three creased amount of memory and execution time required to
store and compute the solution in the superfluous externalspace dimensions, they derived an exact nonreflecting

boundary condition. It is nonlocal in both space and time, layer appended to V.
We now compare the effect of increasing the radius abut it involves only a fixed amount of past information.

When Givoli and Cohen [10] combined this boundary con- of the artificial boundary using a local boundary condition,
with that of increasing N in (2.6) or (5.21). The resultsdition with a standard nondissipative finite-difference

scheme in the interior domain, the numerical solution ex- displayed in Fig. 9 are computed for g 5 f/4 on the 20 3
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same reduction in the error by applying NR1(8) at a 5 1.
This results in less than 10% extra computer time to com-
pute the inner products (U, Ynm) over B and advance the
functions zn0(t) for 1 # n # 8. For BT2, the error decays
much faster as we increase a. Still, to achieve the tenfold
reduction in the error obtained with NR2(8), we must take
a greater than 1.5. This doubles the size of the computa-
tional domain, which doubles both storage requirements
and total execution time. Using NR2(8) with a 5 1 instead
of BT2 with a 5 1.5 again increases the total execution
time by less than 10%. We conclude this section with the
following three key remarks.

First, the boundary conditions NR1 and NR2 achieve
the desired accuracy with a minimal amount of storage.
Indeed, the additional memory needed to store the func-
tions znm(t), umu # n, n 5 1, ..., N is only of the order of
p2N3/3 scalar values, independently of the grid size used.

FIG. 8. Demonstration of long time stability: the solutions Uh, com- Moreover, to avoid recomputing the spherical harmonics
puted with f (x, t) a short-time pulse using the boundary conditions BT1, at each step, one may store exp(imw) and Pum u

n (cos u) sepa-
BT2, NR1(20), and NR2(20), are shown on B at u 5 0.

rately and form their product when needed for calculating
the inner products (Ynm , Uh) over B. Both extra storage
requirements are negligible when compared to the storage

120 mesh. The maximal error Eh
T is always computed over required by the numerical solution on the three-dimen-

0.5 # r # 1, regardless of a. On the left Eh
T is shown versus sional grid.

the radius a for BT1 and BT2. As expected, both local Second, to compute the (N 1 1)2 2 1 Fourier coefficients
boundary conditions improve as we move the artificial (Ynm , Uh), umu # n, 1 # n # N, over B, it is not necessary
boundary farther away from the obstacle. On the right, a to compute pN 2 inner products over the entire sphere.
is displayed versus N, to answer the question: ‘‘how far Instead, one computes only 2N 1 1 inner products with
away must the artificial boundary be located, so that the exp(imf), umu # N, over B, and then computes pN 2 one-
error obtained using BT1 or BT2 be at least as small as dimensional inner products with Pum u

n (cos u) over [0, f]. Let
that using NR1(N) or NR2(N), respectively?’’ p denote the number of grid points in [0, f] and let q Q

Here for BT1, the radius a must be larger than 3.5 to 2p2 be the number of grid points on B. Then, since N is
reduce by a factor Ad the initial error obtained by using much smaller than p—typically N Q p/10 for the numerical
BT1 at a 5 1. This increases memory requirements and solution to be resolved, the cost of computing the Fourier

coefficients is reduced from pN 2q to p2Nq. Similarly, theexecution time by a factor 7. In contrast, we obtain the

FIG. 9. Left: the maximal errors Eh
T , computed over 0.5 # r # 1 using the boundary conditions BT1 and BT2, are shown versus the radius a

for g 5 f/4. Right: the smallest radius a, for which Eh
T obtained using BT1 (or BT2) is less than Eh

T obtained using NR1(N) (or NR2(N), respectively),
is shown versus N.
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cost of computing the right of (2.6) is p2 Nq. As a point of Uh
y is shown inside V at t 5 4. The scattered field separates

into two parts, the reflected and the shadow-forming wave,comparison, advancing the solution on B using the second-
order finite difference stencil requires about 9q operations, which appears behind the sphere.
since updating the value at one grid point requires a

7.3. Piston on a Sphereweighted average of nine neighboring grid points. Thus,
the computational effort per grid point on B is p4N/9 As the final example, we consider the radiation from a
times the cost per grid point of updating the solution in circular piston on a sphere of radius 0.5—see [7; 11, Sect.
the interior domain. 11.3]. The portion of the sphere from u 5 08 to u 5 158 is

Third, for fixed values of N and a, the accuracy of the a piston, moving with radial velocity sin gt, g 5 2f. Else-
boundary conditions NR1 and NR2 improves as the fre- where, the sphere is rigid and the solution vanishes. To
quency g is reduced, because the solution becomes avoid the extra numerical complications due to a discontin-
smoother. In contrast, the accuracy of local boundary con- uous boundary condition, we let the solution decay
ditions such as BT1 and BT2, which are based on the large smoothly to zero for 158 # u # 308. In addition, we use a
distance expansion of the solution, tends to deteriorate as third-order polynomial up to t 5 0.25 to enforce C1 continu-
the low frequency content of the solution increases. ity in t of the boundary data at t 5 0. This problem is

challenging because the waves generated at the piston pole
7.2. Plane Wave Scattering u 5 08 are attenuated by a geometric spreading loss, as

they travel along longitudes down to the south pole. InWe shall now calculate the scattered field of a plane
the region opposite the piston, the amplitude of the waveswave impinging upon the sphere of radius r0 . At the surface
is significantly lower than it is near the piston.of the sphere, we impose the acoustically ‘‘hard’’ boundary

We take the finest mesh 40 3 240 inside V, with B atcondition ­ru 5 0. The incident field ui propagates along
r 5 1. For the exact solution Uh

y , we take the outer bound-the z-axis. If we let t 5 0 at the time of impact, the incident
ary at R 5 6. Thus, the truncation at r 5 R will not befield is
sensed inside V until t 5 10.5. In Fig. 12, the contour lines
for Uh

y and Uh are shown at time t 5 10. In the top part,ui(x, t) 5 sin g(z 2 r0 1 t)H[z 2 r0 1 t], (7.5)
Uh is computed using BT1, and we see that the contour
lines differ severely, especially in the southern hemispherewhere H[x] denotes the Heaviside function. By differenti-
u $ 908. In the bottom part, Uh is computed using BT2.ating ui with respect to r, we obtain a boundary condition
Here Uh captures the physics of the solution much better,for the scattered field u at r 5 r0 ,
especially in the vicinity of the piston. Yet behind the
sphere, a spurious reflection from B travels toward the­

­r
u(r0 , u) 5 g cos u cos(g(r0 cos u 2 r0 1 t))

(7.6)
obstacle. The contour lines of Uh, calculated using
NR1(20), coincide with those of Uh

y perfectly and cannot
3 H[r0 cos u 2 r0 1 t]. be discerned on this figure.

Since the spurious reflections introduced by the local
We choose g 5 4f, r0 5 0.5, and as previously set the boundary operators appear to be most severe at the south
artificial boundary B at r 5 1. The numerical solution in pole, we take a closer look at that region. On the left of
the infinite domain Uh

y is computed until t 5 4 inside the Fig. 13, the solutions Uh and Uh
y are shown at the south

region r0 # r # 3. Thus, the truncation at r 5 3 will not pole of B, r 5 1 and u 5 1808, as functions of time. The
be sensed inside V until t 5 4.5. solutions Uh are computed using BT1, BT2, and NR1(20).

Both Uh
y and Uh, computed using BT1, BT2, and On the right of Fig. 13, the same solutions are displayed

NR1(20), are shown in Fig. 10. The computational domain at time t 5 10 along the z-axis, 0.5 # r # 1 and u 5 1808.
V is discretized using the finest mesh 40 3 240. All three The solutions Uh

y and Uh, calculated using NR1(20) coin-
boundary conditions perform extremely well for this test cide almost perfectly. The solutions Uh, calculated using
problem. On the left, the solutions are shown at B for BT1 and BT2, differ significantly from the exact solution.
08 # u # 1808 and t 5 4, and are hard to distinguish from The spurious reflections they introduce at the outer bound-
each other. On the right, the L2-error Eh(t) is shown: ary travel back into V and spoil the solution right up to
NR1(20) yields but a small improvement in accuracy over the obstacle.
BT2. The high accuracy of the local boundary conditions
was observed throughout the frequency range f/4 # g # 8. CONCLUSION
4f. For small wave numbers, the scattered field from a
sphere is itself nearly spherical. Since BT1 and BT2 are The original exact boundary conditions (2.6) derived in

[1] and the modified boundary conditions (5.21) have bothboth derived to annihilate such waves, they perform well
for this simple test problem. In Fig. 11, the scattered field been found to be very accurate in numerical computations.
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FIG. 10. Plane wave scattering. Left: The solutions Uh, computed using the boundary conditions BT1, BT2, and NR1(20), are compared with
the exact solution Uh

y at t 5 4 on B for at 08 # u # 1808. Right: The error Eh(t) is shown versus time for the same three boundary conditions.

Condition (2.6) requires only first derivatives of the solu-
tion, which makes it robust and easy to use. Condition
(5.21) reduces the error on the truncated harmonic modes,
but it is slightly more complicated to implement. They both
can be viewed as improvements on the local boundary
conditions BT1 and BT2 proposed in [6].

Exact boundary conditions allow the artificial boundary
to be brought in as close as desired to the scatterer. They
are easy to implement and require little extra memory.
Although the formulation is global over the artificial
boundary, it is explicit and does not require the solution

FIG. 11. Contour lines of the scattered field in V for an incident of any large linear system. It only requires inner products
plane wave eig(t2z) impinging upon a hard sphere for g 5 4f, are shown with spherical harmonics of the solution on the artificial
at t 5 4.

boundary. For equations with variable coefficients which
tend to a constant at infinity, we expect the new boundary
conditions to be more accurate than local conditions.

APPENDIX A

We shall now prove Theorem 2.1. Let u1 and u2 be two
solutions of (2.5)–(2.7). Next, let vi , i 5 1, 2 be the unique
‘‘outer’’ solutions of

­2

­t2 vi 2 Dvi 5 0, ixi . a, t . 0, (A.1)

vi(x, 0) 5 0, ­tvi(x, 0) 5 0, ixi $ a, (A.2)

with the boundary condition

vi(x, t) 5 ui(x, t) on ixi 5 a, t . 0. (A.3)

Let pi 5 ui in V and pi 5 vi outside V. Then by (A.3), pi is
continuous across B, so its time derivatives and tangentialFIG. 12. Piston on sphere. Contour lines of the exact solution Uh

y

derivatives are continuous on B. Since both ui and vi satisfy(solid) and of the numerical solution Uh (dotted) are shown at t 5 10.
Top: Uh is computed using BT1. Bottom: Uh is computed using BT2. a second-order equation, we only need to show that the



NONREFLECTING BOUNDARY CONDITIONS 65

FIG. 13. Piston on a sphere. Left: The solutions Uh, computed using the boundary conditions BT1, BT2, and NR1(20), are compared with the
exact solution Uh

y on B at u 5 f. Right: The same four solutions are shown at t 5 10 along the z-axis in the region below the south pole, at u 5

f and 0.5 # r # 1.

normal derivative of pi is continuous across B to show that of the theorem this problem has a unique solution. There-
fore p1 must equal p2 , which completes the proof.pi is a smooth solution of (2.2)–(2.5).
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